How to reverse-engineer a rainforest

How to reverse-engineer a rainforest

In the interim, researchers tasked with studying and reforesting plots outside of carefully-protected landscapes are trying to figure out the best ways to work with the resources and information they’ve got. Experiment, iterate, fail, try again — the third step in our hypothetical reverse-engineering process. “When you’re dealing with a natural ecosystem, we should not have the expectation that we can go in and control everything, and engineer it so that it works exactly how it did, like a machine,” says Robin Chazdon, a former professor at the University of Connecticut, current research professor at University of the Sunshine Coast and member of Brazil’s Tropical Forest and People Research Center, who has spent nearly 40 years of her career regenerating rainforests IRL. “I realize that we are getting much better with AI, and computer modeling and technology, but my experience studying the recovery of forests on the ground over time is that there’s a lot of unpredictable things that can happen.”

For that reason, in areas with low levels of degradation, simply protecting the land and letting the forests grow back on their own is largely seen by conservationists as the best, most cost-effective strategy when it comes to regeneration. This should sound familiar to those of us who have ever seen a Greenpeace ad or studied rainforest conservation in primary school in the early ‘90s—as the argument goes, the rainforest is sacred, complicated, irrevocably wild and must remain untouched to be truly protected.

Drawing of a tapir's footprints

03. Seed Drones

Is that incessant buzzing in my ear a spotted lanternfly — or is it an army of drones coming to replant this barren, post-industrial landscape? Seed-planting drones carry pressurized canisters of germinated seed pods immersed in a nutrient-rich gel, then fire them into the ground from a height of 1-2 meters before flying off to their next bio-target. There are several drone-planting initiatives going down in the Amazon today, the largest by U.K. start-up Dendra Systems, which hopes to plant 500 billion trees by 2060 with the use of “precision forestry.”

But that’s not always possible in a world where borders constantly change and legal protections shift like the acidic, clay-rich sand beneath the rainforest floor. Unassisted regeneration is also not possible scientifically or sociologically in certain sites for a number of reasons: from soils being too far degraded to support natural succession, to the needs of the people who have been living off the rainforest for centuries.

“We need to really look at this from interdisciplinary backgrounds,” says Chazdon. “When you’re dealing with a landscape that has productive agriculture on it, or grazing lands, people are living there, they are using the land. You can’t wall to wall bring that back to a natural ecosystem like you can within a natural park or nature reserve.”

Many scientists in today’s conservation debate also say the drawing of boundaries between “natural” and “unnatural” in the rainforest is inherently limiting, drawing a false dichotomy between protecting ecosystems and protecting human prosperity. Instead of reverse-engineering, they suggest, maybe we should start thinking about where we can start redesigning the rainforest all together.

Already, there’s a sort of classification system in place for differentiating between man-made and nature-made rainforests. Primary forests, also known as “old-growth” “primeval” or “late seral” forests are those that have attained great age without significant disturbance. To be fair, there is no single definition of the term—some rely on human interference as their marker; others, acknowledging that human interference is everywhere, from the CO2 in the atmosphere to the microplastics in the bottom of our rivers, rely on minimum age (i.e. 150 years) to mark their distinction.

And then there are secondary forests. Those that have regrown after major human impact, and recovered just enough so that the effects of disturbance are no longer immediately evident. With only 21 percent of the earth’s original old-growth forests remaining, these are the Anthropocene creations that may one day help knit together the remaining fragments of ancient nature into a more contiguous, constantly changing system. New growth also helps protect watersheds and prevent erosion for forests that have higher mitigation potential and makes the forest as a whole less susceptible to disease.

Even more critically, secondary forests are also where the rules of engagement get a bit less precious. Instead of being cordoned off from the world for research or conservation, these new iterations of rainforest ecology can help support native communities, harbor indigenous medicines and even, as some scientists are suggesting, serve as extractive reserves for the limited harvest of timber, game animals, and other forest products to help sustain the people who live there.

“I think the best approach is a systems approach,” says Chazdon. “In many ways, we are trying to reestablish a new system that is going to be able to perpetuate itself given the challenges of climate change, and given that there’s already been a lot of damage that’s already been done. The composition may really not be identical. In reality, it might be quite different.”

That brings us to the final step in any reverse-engineering process: Swap out parts where necessary. In the rush to mitigate the effects of deforestation, researchers, environmentalists, NGOs, corporations and tree-savvy start-ups are flooding into the area, working with and against each other to combat the crisis and claim responsibility for its resurgence in their own ways. As with engineering the ecology of the Amazon, the international race to replant will likely come down to the survival of the fittest.

“Over the past few years, we have seen a massive interest in reforestation,” says Stephanie Kimball, director of climate strategy at Conservation International, one of the four largest conservation organizations in the world and biggest players in Amazon reforestation today. “I definitely would say that it’s the most popular kid in class right now as far as these kinds of climate solutions go.”

In 2017, Conservation International announced it was launching the world’s largest-ever tropical reforestation project, with a plan to plant 73 million trees in Brazil’s Amazon across 30,000 hectares by the end of 2023. The purpose of the project is in part, to revive the 20 percent of the Amazon lost to deforestation over the past 40 years. CI, which has offices in 29 countries and has over 2,000 partners worldwide, is also interested in joining researchers like Chazdon, Moorcroft, and Hall in learning how to track and restore tropical rainforests from the ground up — and have raised money from dozens of massive corporations to do so.

Drawing of a tapir's footprints

04. Inga Alley Cropping

novel agroforestry technique developed in Costa Rica that helps protect rainforest soil while allowing farmers to grow crops between rows of trees. The inga, a genus of small, tropical, nitrogen-fixing shrubs known locally as the “ice-cream bean tree” is used to provide shade to crops and prevent soil erosion. Once crops are harvested, the ingas are cut back and their leaves are left there to decompose on the ground, creating a self-sustaining cycle of fertility, growth, and carbon capture on sites that might otherwise be slashed and burned or sold to the highest bidder.

From McDonald’s to United Airlines to Google to ExxonMobil, CI is working with some of the world’s biggest polluters to trade in emissions for ecology. Going back to the climate change conversation, it makes sense that so many are investing their efforts into reforestation right now. Around the world, tropical rainforests store an estimated 471 billion tons of carbon, more than all the carbon ever emitted from fossil fuel combustion and cement production combined. According to estimates by the International Panel on Climate Change, the Amazon rainforest alone can absorb a quarter of the CO2 released each year from the combustion of fossil fuels—making tree planting initiatives like CI’s one of the most popular ways for businesses to reduce their net emissions.

CI isn’t the only big player in the Amazon taking up this industry-first approach either. More recently, the Trillion Trees Project — which U.S. President Donald Trump announced he was signing on to at this year’s World Economic Forum in Davos—pledged to plant one trillion trees around the globe (including the Amazon) to help combat climate change over the next decade. The initiative is joined by other environmental giants like the WWF, World Conservation Society and BirdLife International and claims that planting a trillion trees could capture more than a third of all the greenhouse gases humans have released since the Industrial Revolution.

Drawing of a tapir's footprints

05. Novo Campo

A sustainable cattle ranching pilot project started by Brazilian NGO Instituto Centro de Vida promising “forest-friendly beef.” The technique works by dividing rainforest plots into small units, then asking ranchers to regularly rotate their cattle through them one by one to help optimize grass growth and keep soil fertile over time. Rather than letting their cows have free, destructive reign over their plots, ranchers instead provide cozy tree-lined groves, improving animal welfare, CO2 capture, and productivity, while potentially bringing the world one step closer to a zero deforestation beef product future.

“It’s the only way we know of right now — the only technology that can take emissions that are already in the atmosphere out of the atmosphere at scale,” explains Kimball. “It’s like the original carbon capture.” And unlike massive carbon-sucking machines, direct air capture techniques or rethinking the entire global agricultural system to better trap carbon in the soil, this method is also seemingly the simplest. Plant a tree. Reduce your emissions. Create a place where carbon capture, wildlife conservation, agriculture and big business can live together in perfect harmony.

But many have been quick to point out that this all too convenient salve may be too good to be true; there is trouble in paradise. As corporations race to partner with nonprofits who will erase their environmental footprints with massive tree-planting initiatives, so too grows a movement of grassroots advocates who are hoping to stand in their way and swap out a new solution to the crisis.

“Far too often, what we see from a number of large NGOs is this readiness to partner with the very corporations that have been fueling the crisis for so long,” says Sriram Madhusoodanan, deputy campaigns director at Corporate Accountability International, a Boston, Massachusetts-based advocacy group that has called out CI in the past for its partnerships with big businesses like Fiji Water and Starbucks. “I think when we see the profiteers of deforestation attempt to position themselves as the solution, I think at the very least, you have to ask why.”

Drawing of a tapir's footprints

06. Tapir Army

Go ahead, call my bias, but us tapirs, with our prehensile snouts and fragrant, communal latrines make us some of the best natural seed-dispersers in the Amazon. New research using camera trapping, scat collection, and remote LiDAR sensing suggest we may be an ideal species for reforestation, since we actually prefer dining (and pooping) in disturbed areas of the rainforest, where scavenging for lithe, young shoots is easier. Tapirs also drop 120 times more climax seed species than pioneer species, meaning our scat might help forests achieve a healthier succession—with little need for human intervention.

Instead of placing power into the hands of the highest bidder, groups like Corporate Accountability International want to put reforestation in the hands of local, frontline communities. They also want to force big business to pay for reforestation not voluntarily, but to make it compulsory and trade the emerging conversation about environmental realism and managed expectations with one that holds industries directly accountable for their impacts.

Other groups working on large-scale reforestation projects like the Rainforest Action Network, the Natural Resources Defense Council and the Environmental Defense Fund, are with them. Though many do work with big companies to reduce their impact, they make a point to not take any consulting fees or donations and share findings from their work, good or bad.

“I mean, this is where the real solutions are,” says Madhusoodanan. “This is where they have always been, and this is where we need to invest in order to stand a chance at staying below what we in the global movement call ‘real zero,’ not net zero. We need to drastically reduce emissions and ensure that as we do so, we’re centering justice for the communities most impacted.”

When asked about the criticism, Kimball was ready with a quick response. “Every organization has to make their own judgement on who to partner with and we respect everybody’s perspective on that. We made the determination that if companies want to come to the table to invest and make a change and want to do it the right way, then we want to help them do that.”

div#stuning-header .dfd-stuning-header-bg-container {background-image: url(;background-size: initial;background-position: top center;background-attachment: initial;background-repeat: no-repeat;}#stuning-header {min-height: 650px;}